Acta Cryst. (1998). C54, 169-171

Intralayer Hydrogen Bonding in CdSeO₃.H₂O

Ulrich Bäumer, Bernward Engelen and Holger Müller

Anorganische Chemie II, Universität-GH Siegen, D-57068 Siegen, Germany. E-mail: engelen@chemie.uni-siegen.de

(Received 1 September 1997; accepted 20 October 1997)

Abstract

Single crystals of cadmium trioxoselenate(IV) monohydrate were obtained from aqueous solutions of H_2SeO_3 and $[Cd(CH_3COO)_2].2H_2O$. $CdSeO_3.H_2O$ crystallizes in the MnSeO_3.D_2O *oP*32 type. The structure contains buckled *trans* $[CdSeO_3.H_2O]_i^2$ layers consisting of strongly distorted, vertex-sharing $CdO_5(H_2O)$ octahedra and SeO_3^{2-} ions, both of symmetry *m*. The H-atom position was also determined, indicating that the H₂O molecules have pseudo *mm*2 symmetry. They form an intralayer hydrogen-bonding scheme with approximately linear hydrogen bonds of distance $d(OH \cdots O) = 2.903$ (3) Å. As a consequence, the $[MSeO_3.H_2O]_i^2$ layers of the [MnSeO_3.D_2O] *oP*32-type monohydrates are held together by van der Waals interactions but not by hydrogen bonds.

Comment

The chalcogenite monohydrates MXO_3 .H₂O (M = Mg, Mn, Co, Ni, Zn, Cd; X = S, Se) form a series of octahedral layer structures all containing the same type of buckled *trans* $[MXO_3, H_2O]^2$ layers (Engelen, 1994; Engelen et al., 1995, 1996). The structures differ mainly in the lateral arrangement of the layers, giving rise to some local pseudosymmetry and related contradictions with respect to the interpretation of the IR spectra (Engelen *et al.*, 1996). The structures are of types a_1 or b_1 (Wells, 1990), *i.e.* the layers are held together either by van der Waals forces, as in ZnSeO₃.H₂O mP32 (Engelen et al., 1996), or by hydrogen bonds, as in MnSO₃.H₂O mP32 (Engelen, 1994). Thus, the interlayer forces and the type of the resulting structures are determined mainly by the orientation of the apically positioned H₂O molecules (Fig. 1). The orientation of the H₂O molecules is believed to depend on the nature of the chalcogenite (Engelen et al., 1996).

Powder X-ray diffraction and IR measurements (Engelen *et al.*, 1996) imply that CdSeO₃.H₂O is iso-typic with MnSeO₃.D₂O *oP*32 (Koskenlinna & Valko-

Fig. 1. Possible orientations of the H₂O molecules with respect to the MO_6 octahedra of layer-type hydrates $MXO_3.(H/D)_2O$ (M = Mg, Mn, Co, Ni, Zn, Cd; X = S, Se).

nen, 1977; Engelen *et al.*, 1996). In order to determine unambiguously the orientation of the $(H/D)_2O$ molecules of these MnSeO₃.D₂O *oP*32-type monohydrates, the crystal structure of CdSeO₃.H₂O was determined by single-crystal X-ray diffraction. The determination of the H₂O orientation provides evidence for the abovementioned influence of the nature of the chalcogenite on the structural chemistry of chalcogenite monohydrates. CdSeO₃.H₂O was chosen because the crystal quality of the other MnSeO₃.D₂O *oP*32-type compounds was not sufficient for determination of the H-atom positions (see Koskenlinna & Valkonen, 1977).

The heavy-atom structure (Cd, Se, O) was found to correspond to that of MnSeO₃.D₂O oP32 (Koskenlinna & Valkonen, 1977), *i.e.* CdSeO₃.H₂O is built up from $[CdSeO_3.H_2O]_i^2$ layers of symmetry $Pnm2_1$ consisting of distorted vertex-sharing CdO₅(H₂O) octahedra and distorted trigonal pyramidal SeO_3^{2-} ions, both of symmetry m (Fig. 2 and Table 2). The layers have a buckled trans configuration with non-collinear Cd-O bonds. They are repeated by the 2_1 axes parallel to [100]. The distortion of the CdO_6 and SeO_3 groups is caused by the fact that SeO_3^{2-} acts as both a mono- and a bidentate ligand to Cd (see Fig. 2). The distortion found for CdSeO₃.H₂O is greater than that for MnSeO₃.D₂O (see Müller, 1997). The 'overlap' of the CdO₆ octahedra [see Koskenlinna & Valkonen (1977) and Fig. 2], represented by the Cd—O—Cd angle (Table 2), is the smallest found for chalcogenite monohydrates (Engelen et al., 1996).

The H₂O molecules were found to be oriented with the OH directors nearly parallel to the $[CdSeO_3.H_2O]_i^2$ layers (Fig. 2). With respect to the MO_6 octahedra, the orientation is as given in Fig. 1(b) and is the same as that found in ZnSeO₃.H₂O *mP*32 (Engelen *et al.*, 1996). The corresponding intralayer hydrogenbonding scheme is shown in Fig. 3. In agreement with the IR spectra of isotopically dilute samples (Engelen *et al.*, 1996), the hydrogen bonds are weak, approximately linear and symmetric (Table 2 and Fig.

Fig. 2. The crystal structure of CdSeO₃.H₂O viewed approximately (4°) along [001] (left) and along $[0\overline{1}0]$ (right) showing the buckled layers [CdSeO₃.H₂O]²_i and the intralayer hydrogen bonds (dashed lines).

3). The orientation of H₂O as given in Fig. 1(c), and the resulting interlayer hydrogen-bonding scheme, are still restricted to the corresponding layered sulfite monohydrates (Engelen, 1994; Engelen *et al.*, 1996). This proves the theory that the $[MXO_3.H_2O]_i^2$ layers of the chalcogenite monohydrates are held together by van der Waals forces in the case of the selenites and by hydrogen bonds in the case of the sulfites.

Fig. 3. The hydrogen-bonding scheme and OH···O distances (Å) for CdSeO₃.H₂O. The O atoms are drawn at a probability level of 48%. H atoms are shown with arbitrary radii. The symmetry codes are those given in Table 2, plus (viii) $\frac{1}{2} - x$, -y, $z - \frac{1}{2}$.

As in MnSeO₃.D₂O oP32 and ZnSeO₃.H₂O mP32(Engelen *et al.*, 1996), the layers of CdSeO₃.H₂O oP32are limited by the Se atoms and not by the H₂O molecules as in MnSO₃.H₂O (Engelen *et al.*, 1996). In all these selenite hydrates/deuterates, the depths of the layers decrease with the decreasing ionic radii of Cd, Mn and Zn. The interlayer distances increase in the same way by similar amounts (Müller, 1997). This unexpected finding is not caused by metal-dependent electrostatic interactions between the layers, but is attributed to simple geometric reasoning (Müller, 1997).

Experimental

Crystals of the title compound were obtained in the form of colourless prisms, needles or plates by slow evaporation over 2 weeks of an aqueous solution of $0.05 M H_2 SeO_3$ and $0.05 M [Cd(CH_3COO)_2].2H_2O$ at room temperature (see also Engelen *et al.*, 1996).

Crystal data

CdSeO₃.H₂O Mo $K\alpha$ radiation $M_r = 257.38$ $\lambda = 0.71069 \text{ Å}$ Orthorhombic Cell parameters from 24 Pnma reflections a = 13.180(2) Å $\theta = 10.02 - 46.68^{\circ}$ b = 5.8904(8) Å $\mu = 14.696 \text{ mm}^{-1}$ c = 5.0560(5) Å T = 293(2) K $V = 392.52(9) \text{ Å}^3$ Transparent prism Z = 4 $0.4 \times 0.2 \times 0.1$ mm $D_x = 4.355 \text{ Mg m}^{-3}$ Colourless $D_m = 4.30 \text{ Mg m}^{-3}$ D_m measured by pycnometry

Data collection

Enraf-Nonius CAD-4 595 reflections with diffractometer $I > 2\sigma(I)$ $\omega/2\theta$ scans $R_{\rm int} = 0.032$ Absorption correction: $\theta_{\rm max} = 29.93^{\circ}$ ψ scans (North et al., $h = -18 \rightarrow 18$ 1968) and spherical $k = -7 \rightarrow 0$ (Bond, 1959) $l = -6 \rightarrow 6$ $T_{\min} = 0.054, T_{\max} = 0.116$ 3 standard reflections 2265 measured reflections frequency: 60 min 609 independent reflections intensity decay: 1.2% Refinement

Refinement on F^2	$\Delta \rho_{\rm max} = 1.150 \ {\rm e} \ {\rm \AA}^{-3}$
$R[F^2 > 2\sigma(F^2)] = 0.019$	$\Delta \rho_{\rm min} = -0.821 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.044$	Extinction correction:
S = 1.290	SHELXL93 (Sheldrick,
609 reflections	1993)
39 parameters	Extinction coefficient:
H atom refined isotropically	0.0390 (14)
$w = 1/[\sigma^2(F_a^2) + (0.0168P)^2]$	Scattering factors from
+ 0.5112P]	International Tables for
where $P = (F_o^2 + 2F_c^2)/3$	Crystallography (Vol. C)
$(\Delta/\sigma)_{\rm max} = -0.001$	

Table 1. Fractional	atomic coord	inates and	isotropic d)1
equivalent isotro	pic displacem	ent param	eters (Å ²)	

$U_{\rm iso}$ for H, $U_{\rm eq}$	$=(1/3)\Sigma_i\Sigma_i$	_i U ^{ij} a [*] ia [*] ia _i .a	i for all others.
-----------------------------------	--------------------------	--	-------------------

	x	у	z	$U_{\rm iso}/U_{\rm cq}$
Cd	0.27185 (2)	1/4	0.40234 (5)	0.01666 (12)
Se	0.40643 (3)	3/4	0.48839 (7)	0.01405 (13)
01	0.1357 (3)	1/4	0.6813 (6)	0.0290 (7)
02	0.3410(2)	0.5330 (3)	0.6386 (3)	0.0196 (4)
O3	0.3980 (3)	1/4	0.0846 (6)	0.0233 (6)
Н	0.389 (4)	0.137 (8)	-0.037 (8)	0.034 (11)

Table 2. Selected geometric parameters (Å, °)

	-		
Cd—01	2.283 (3)	Se—O1 ⁱⁱⁱ	1.649 (3)
Cd—O2	2.245 (2)	Se—O2	1.719(2)
Cd—O2 ⁱ	2.245 (2)	Se—O2 ^{iv}	1.719(2)
Cd—O2 ⁱⁱ	2.372 (2)	O3—H	0.91 (4)
Cd—O2 ⁱⁱⁱ	2.372 (2)	H—O2 [°]	2.02 (4)
Cd—O3	2.312 (3)	O3—O2 ^v	2.903 (3)
O1 ⁱⁱⁱ —Se—O2	104.32 (10)	Н—О—Н ^і	93 (5)
O1 ⁱⁱⁱ —Se—O2 ^{iv}	104.32 (10)	O3—H—O2 ^v	161 (4)
O2 ^{iv} —Se—O2	96.09 (13)	O2 ^v —O3—O2 ^{vii}	70.10 (10
Cd—O2—Cd ^{vi}	116.41 (9)		

Symmetry codes: (i) $x, \frac{1}{2} - y, z$; (ii) $\frac{1}{2} - x, y - \frac{1}{2}, z - \frac{1}{2}$; (iii) $\frac{1}{2} - x, 1 - y, z - \frac{1}{2}$; (iv) $x, \frac{3}{2} - y, z$; (v) $x, \frac{1}{2} - y, z - 1$; (vi) $\frac{1}{2} - x, 1 - y, \frac{1}{2} + z$; (vii) x, y, z - 1.

Lattice parameters were determined from X-ray Guinier powder photographs (Cr $K\alpha_1$ radiation, α -quartz as internal standard) using a Huber-Guinier system 600 and the refinement program *LSUCR* (Evans *et al.*, 1963). The atomic positions were obtained from a Patterson map (Cd, Se) and successive least-squares refinements and ΔF syntheses (O, H).

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Data reduction: NRCVAX (Gabe et al., 1989). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1971), ATOMS (Dowty, 1995). Software used to prepare material for publication: SHELXL93.

This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1149). Services for accessing these data are described at the back of the journal.

References

Bond, W. L. (1959). Acta Cryst. 12, 375-381.

Dowty, E. (1995). ATOMS for Windows. Version 3.1. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.

Engelen, B. (1994). Z. Naturforsch. Teil B, 49, 1272-1276.

- Engelen, B., Bäumer, U., Hermann, B., Müller, H. & Unterderweide,
- K. (1996). Z. Anorg. Allg. Chem. 622, 1886-1892. Engelen, B., Müller, H. & Unterderweide, K. (1995). Z. Kristallogr.
- Suppl. 9, 20. Enraf-Nonius (1989). CAD-4 Software. Version 5. Enraf-Nonius,
- Delft, The Netherlands.
- Evans, H. T., Appleman, D. E. & Handwerker, D. S. (1963). Ann. Meet. Prog. Am. Crystallogr. Assoc. Cambridge, Massachusetts, USA, p. 42.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
- Johnson, C. K. (1971). ORTEPII. Report ORNL-3794, revised. Oak Ridge National Laboratory, Tennessee, USA.
- Koskenlinna, M. & Valkonen, J. (1977). Acta Chem. Scand. Ser. A, 31, 752–754.
- Müller, H. (1997). Doctoral thesis, University of Siegen, Germany.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Wells, A. F. (1990). Structural Inorganic Chemistry, pp. 30–33. Oxford: Clarendon Press.

Acta Cryst. (1998). C54, 171-174

Tetraammonium Tetrametaphosphimate Tetrahydrate

NORBERT STOCK AND WOLFGANG SCHNICK

Laboratorium für Anorganische Chemie, Universitätsstraße 30, D-95440 Bayreuth, Germany. E-mail: wolfgang. schnick@uni-bayreuth.de

(Received 11 July 1997; accepted 29 September 1997)

Abstract

The tetrametaphosphimate ring in the title compound [tetraammonium *cyclo*-tetra- μ -imido-tetraphosphate tetrahydrate, (NH₄)₄(PO₂NH)₄.4H₂O] exhibits a chair conformation. The tetrametaphosphimate rings are linked by N—H···O bonds forming columns along [100]. These columns are interconnected by O—H···O and N— H···O hydrogen bonds through water molecules and ammonium ions. All H atoms are involved in hydrogen bonding.

Comment

The synthesis of salts of the tetrametaphosphimic acid $H_4(PO_2NH)_4.2H_2O$ has been well investigated (Stokes, 1896; Lunkwitz & Steger, 1968; Herzog & Nielsen, 1958) but the compounds have been mainly characterized by IR spectroscopy (Corbridge & Lowe, 1954; Lunkwitz & Steger, 1968; Pustinger *et al.*, 1959; Sukova